
Transmission Control
Protocol

2 of 35

Agenda

 Introduction

 Features

 Connection Establishment and Termination

 Flow Control

 Error Control

 Congestion Control

3 of 35

TCP Introduction

 TCP:
◦ Process-to-Process communication
◦ Full Duplex communication
◦ Connection-oriented service
◦ Stream-oriented protocol (stream of bytes)
◦ Segmentation (datagrams in IP layer)
◦ Utilizes buffers at both ends (flow & error control)
◦ Reliable (ACKs)

 TCP seeks to deliver a byte stream from end-to-
end, in order, reliably.

4 of 35

TCP Header

5 of 35

TCP Features

 Numbering system
◦ Byte Number

 TCP numbers all the data bytes that are transmitted in a
connection

 Numbering does not necessarily start from 0

 TCP generates a random number between 0 and 232-1 for
numbering first byte

 Eg. Random no. = 3423 (first byte)

 Total bytes = 5000

 Numbering range = 3423-8422

6 of 35

TCP Features

◦ Sequence number
 Bytes are grouped into “segments”

 Sequence number for each segment is the number of
the first byte carried in that segment

 3423 (3423-4422)

 4423 (4423-5422)

 5423 (5423-6422)

 6423 (6423-7422)

 7423 (7423-8422)

7 of 35

TCP Features

◦ Acknowledgement number

 Defines the number of the next byte that the
party expects to receive

 It is cumulative

 ACK = 5487

 It means it has received all bytes from beginning
up to 5486 (beginning may not be 0)

8 of 35

TCP Features

 Flow control
◦ Receiver of the data controls the amount of data that are

to be sent by the sender

◦ Numbering system allows TCP to use byte-oriented flow
control

 Error control
◦ Considers a segment as a unit of data for error detection

 Congestion control

9 of 35

Connection Establishment

 Establishes a virtual path between the source
and destination

 How TCP is connection-oriented while using IP
(connection-less)?
◦ Connection is virtual

◦ TCP uses the services of IP to deliver individual
segments, but it controls the connection itself

◦ IP is unaware of retransmission, out-of-order segments

10 of 35

Connection Establishment

 Three way Handshaking

11 of 35

Connection Establishment

 SYN:
◦ It is for synchronization of sequence numbers
◦ It consumes 1 sequence number
◦ Carries no real data

 SYN+ACK:
◦ SYN segment for communication in other direction and

ACK for the received SYN
◦ It consumes 1 sequence number

 ACK
◦ Just an ACK segment
◦ Does not consume any sequence number

12 of 35

Connection Termination

 Three way Handshaking

13 of 35

Connection Termination

 FIN:
◦ It consumes 1 sequence number

◦ May or may not carry real data

 FIN+ACK:
◦ FIN segment to announce closing of connection in other

direction and ACK for the received FIN

◦ It consumes 1 sequence number

 ACK
◦ Just an ACK segment

◦ Does not consume any sequence number

14 of 35

15 of 35

Flow Control

 TCP uses sliding window to handle flow control

 The size of the window is determined by the
lesser of two values: rwnd or cwnd

 rwnd: it is the number of bytes the receiver can
accept before its buffer overflows

 cwnd: it is the value determined by the network
to avoid congestion

 The receiver controls most of the aspects

16 of 35

Flow Control

17 of 35

Error Control

 Includes mechanisms for detecting corrupted
segments, lost segments, out-of-order segments
and duplicated segments

 Achieved through the use of three simple tools:
◦ Checksum

◦ Acknowledgement

◦ Retransmission

18 of 35

Checksum

 Each segment includes a checksum field, used to
check for corrupted segment

 TCP uses a 16-bit checksum

 Corrupted segment is discarded by the
destination and is considered lost

19 of 35

Acknowledgement

 Confirm the receipt of data segments

 Control segments that carry no data but
consume a sequence number are also
acknowledged

 ACK segments are never acknowledged

20 of 35

Retransmission

 A segment is retransmitted on two occasions:
◦ When a retransmission timer expires

◦ When the sender receives three duplicate ACKs

 There is no retransmission for ACK segments

 Retransmission after RTO:
◦ TCP maintains one RTO timer for all outstanding (sent,

but not acknowledged) segments

◦ When the timer matures, the earliest outstanding
segment is retransmitted

◦ Value of RTO is dynamic and is updated based on RTT

21 of 35

Fast Retransmission

 Let the value of RTO be very large

 One segment is lost and receiver receives so
many out-of-order segments that they cannot be
saved (buffer size)

 When the sender receives 4 ACKs with same
value (1 original and 3 duplicates), even though
the timer has not matured the fast
retransmission requires that the segment be
resent immediately

22 of 35

Fast Retransmission

23 of 35

Fast Retransmission

 When the sender receives retransmitted ACK, it
knows that the four segments are safe and
sound because ACK is cumulative

24 of 35

Adaptive Retransmission

 TCP attempts to determine the approximate round-trip
time between the devices, and adjusts it over time to
compensate for increases or decreases in the average
delay.

 TCP aims for an average RTT value for the connection.

 This average should respond to consistent movement up or
down in the RTT without overreacting to a few very slow or
fast acknowledgments.

 TCP re-estimates RTT after every successful transmission
(not retransmission).

25 of 35

Adaptive Retransmission

 The RTT calculation uses a smoothing formula:
◦ New RTT = (a * Old RTT) + ((1-a) * Newest RTT

Measurement)

 Where “a” (alpha) is a smoothing factor between
0 and 1.

 Higher values of “a" (closer to 1) provide better
smoothing and avoiding sudden changes as a
result of one very fast or very slow RTT
measurement

26 of 35

Adaptive Retransmission

 Conversely, this also slows down how quickly TCP
reacts to more sustained changes in round-trip time.

 Lower values of alpha (closer to 0) make the RTT
change more quickly in reaction to changes in
measured RTT, but can cause “over-reaction” when
RTTs fluctuate wildly.

 Adaptive retransmission is a key for TCP success
since it allows TCP to run in fast networks as well as
slow networks.

27 of 35

Congestion Control

 TCP’s general policy for handling congestion is
based on three phases:
◦ Slow Start: Exponential Increase

◦ Congestion Avoidance: Additive Increase

◦ Congestion Detection: Multiplicative Decrease

28 of 35

Slow Start

 Size of congestion window (cwnd) starts with 1 max.
segment size (MSS), determined during conn.
establishment

29 of 35

Slow Start

 Slow start cannot continue indefinitely

 Sender keeps a track of a variable named
ssthresh, when the size of window, in bytes,
reaches this threshold, slow start stops

 In most cases the value of ssthresh is 65,535
bytes

30 of 35

Congestion Avoidance

 When the slow start phase stops, the additive
phase begins

 Each time the whole window of segments is
acknowledged, the size of the congestion window
is increased by 1

31 of 35

Congestion Detection

 If congestion occurs, the congestion window size
must be decreased

 Sender can guess congestion by need to
retransmit a segment

 Retransmission can occur in one of two cases:
◦ Time-out

◦ 3 ACKs are received

32 of 35

Congestion Detection

 If detection is by time-out:
◦ It sets the value of the threshold to one half of current

window size

◦ It sets cwnd to the size of one segment

◦ It starts the slow-start phase again

 If detection is by 3 ACKs:
◦ It sets the value of the threshold to one half of current

window size

◦ It sets cwnd to the value of the threshold

◦ It starts the congestion avoidance phase

33 of 35

Congestion Example

34 of 35

35 of 35

Thank You

